Une détection inédite d'ondes gravitationnelles ouvre la voie à une « nouvelle astronomie »

Étoiles à neutrons >> trous noirs
Tech 7 min
Une détection inédite d'ondes gravitationnelles ouvre la voie à une « nouvelle astronomie »
Crédits : diuno/iStock

De nouvelles ondes gravitationnelles ont été détectées. Pour la première fois, elles proviennent de la fusion de deux étoiles à neutrons et sont combinées avec l'observation de signaux lumineux, ce que les scientifiques espéraient depuis longtemps. De quoi mieux comprendre notre univers et valider certaines théories.

Encore hypothétiques il y a 18 mois, les ondes gravitationnelles sont devenues une réalité depuis l'annonce de leur observation directe le 11 février 2016 (voir cette actualité pour tous les détails). Il s'agit pour rappel d'une oscillation de l’espace-temps, deux éléments formant un tout et s'influençant l'un l'autre.

Des ondes gravitationnelles comme s'il en pleuvait

Pour simplifier, on les représente souvent comme de petites vaguelettes modifiant la structure de l'espace-temps. Un phénomène analogue à un caillou que l'on jetterait dans l'eau par exemple. L'existence des ondes gravitationnelles avait été prédite par Albert Einstein dans sa théorie de la relativité générale énoncée il y a 100 ans.

Après la première observation (récompensée par un triple prix Nobel de physique et deux médailles d'or du CNRS, excusez du peu), il y en a officiellement eu trois autres jusqu'à présent. La dernière en date remonte au 14 août 2017 (annoncée fin septembre). Particularité de cette dernière, elle avait été mesurée par trois instruments à la fois : les deux détecteurs de LIGO et celui de Virgo, tous en version « Advanced » avec une sensibilité améliorée.

Cette triple mesure sur deux continents différents avait permis une bien meilleure localisation de leur origine dans l'Univers. Malgré une recherche studieuse dans cette zone, aucun signal lumineux n'avait été capté, regrettaient alors les scientifiques. Aujourd'hui, ces derniers peuvent se réjouir avec « une découverte majeure à plus d’un titre », comme l'explique le CNRS. 

Nouvelle détection : un signal bien plus long, accompagné d'une source lumineuse

La moisson du mois d'août réservait en effet d'autres surprises. Le 17 à 14h41 heure française, trois jours seulement après la précédente observation, les deux instruments de LIGO et celui de Virgo ont de nouveau détecté des ondes gravitationnelles. Surprise, le signal était bien plus long que d'habitude.

Les précédentes détections ne duraient en effet qu'une fraction de seconde, contre près d'une centaine de secondes cette fois-ci, une échelle de temps sans commune mesure. Un signe fort montrant que les deux objets qui ont fusionné et émis les ondes gravitationnelles sont différents des trous noirs rencontrés jusqu'à présent.

Detecteur LIGO Virgo
Les trois détecteurs LIGO et Virgo - Crédits : CNRS / Nicola Baldocchi 2015

La fusion de deux étoiles à neutrons détectée grâce aux ondes gravitationnelles

« L'analyse détaillée des données indiquera que les masses des deux objets sont comprises entre 1,1 et 1,6 fois la masse du Soleil, ce qui correspond à celles des étoiles à neutrons » explique le CNRS. Pour rappel, la masse des trous noirs observés précédemment était entre 20 et 40 fois celle du Soleil. Prenons quelques instants pour définir une étoile à neutrons.

Il s'agit d'une ancienne étoile massive qui a explosé devenant ainsi une supernova. Elle émet alors un intense rayonnement lumineux avant de devenir un noyau extrêmement dense composé presque uniquement de neutrons, d'où son nom. Une étoile à neutron « a la taille d’une ville comme Londres, mais une petite cuillère de sa matière pèse environ un milliard de tonnes » indique le Centre national de la recherche scientifique.

Comme les étoiles classiques, elles sont parfois en couple et tournent l'une autour de l'autre. À l'instar de la fusion de deux trous noirs, les étoiles à neutrons accélèrent au fur et à mesure qu'elles se rapprochent l'une de l'autre. Elles émettent des ondes gravitationnelles jusqu'à la fusion, le point d'orgue de ce phénomène.

Pour la première fois, une observation de la lumière émise

Lors de la dernière publication, les scientifiques regrettaient l'absence de signal lumineux en lien avec les ondes gravitationnelles, alors même que la localisation de la source était plus précise qu'avant, permettant ainsi de pointer plus facilement des télescopes dans une zone de l'espace.

Cette fois-ci, la chance semble être au rendez-vous puisque le satellite Fermi de la NASA a capté un flash de rayons gamma. Cet événement pourrait être anodin puisqu'il arrive toutes les semaines environ, mais la chronologie des faits indique « un lien fort » entre les ondes gravitationnelles et le flash de rayons gamma. Le CNRS indique en effet que le deuxième événement s'est produit seulement deux secondes après le premier.

Selon les données récoltées par les détecteurs LIGO et Virgo, le point d'origine des ondes gravitationnelles se trouve dans une zone de 30 degrés carrés, soit environ 120 fois la taille de la pleine Lune. Pour rappel, elle était de 80 degrés carrés la dernière fois (avec trois instruments), soit environ 320 fois la Lune (ensuite ramenée à 60 degrés carrés, soit 250 Lunes environ), signe que la précision augmente (peut-être en lien avec la durée de l'événement d'une centaine de secondes ?).

Bonne nouvelle, les estimations de localisation de Fermi et des trois interféromètres de Michelson (les deux instruments de LIGO et celui de Virgo) sont compatibles, c'est-à-dire qu'elles recoupent la même partie de l'espace. Il n'en fallait pas plus pour que plusieurs dizaines de groupes d'astronomes partenaires pointent des télescopes dans cette direction à la recherche de signaux lumineux. Hubble a également été mis à contribution dans cette quête.

Pour la petite histoire, sachez que la fusion des étoiles à neutrons s'est déroulée dans la constellation de l’Hydre de l’hémisphère austral.

La première détection d'une kilonova

En utilisant le télescope Swope au Chili, une équipe repère un nouveau point lumineux dans la galaxie NGC 4993. Elle se trouve à 130 millions d'années-lumière. Plusieurs autres télescopes confirment ensuite les mesures avec des observations multiples dans la partie visible du spectre lumineux. Pour la première fois, la détection d'ondes gravitationnelles s'accompagne donc d'un signal lumineux, et ce n'est pas anodin.

L'analyse des données « montre qu'il ne s'agit pas d’une supernova, mais d'un type d'objet encore jamais observé, constitué de matière très chaude qui refroidit et dont la luminosité décroît rapidement – d’où une course contre la montre pour l’observer avant qu’il ne s’estompe ». 

Les théories scientifiques supposaient que la matière éjectée lors de la fusion de deux étoiles à neutrons était « le siège de réactions nucléaires aboutissant à la formation de noyaux atomiques plus lourds que le fer (comme l’or, le plomb, etc.), grâce à l'abondance de neutrons. Cette matière très chaude et radioactive se disperse alors, émettant de la lumière dans toutes les longueurs d'onde, initialement très bleue puis rougissant au fur et à mesure que la matière refroidit en se dispersant ». Il y a donc concordance entre la théorie et la réalité des mesures.

Pour le CNRS, ce phénomène prédit par la théorie sous le nom de kilonova est ainsi « confirmé de manière convaincante ». Le centre de recherche scientifique ajoute qu'on « a donc observé ce qui est sans doute le principal processus de formation des éléments chimiques les plus lourds de l’Univers ». Mais ce n'est pas tout, l'existence des kilonovas « permet également de mieux comprendre la physique des étoiles à neutrons et éliminer certains modèles théoriques extrêmes ». 

Une nouvelle manière de découvrir l'Univers

Comme souvent avec les ondes gravitationnelles, leurs observations ouvrent en plus de nouvelles perspectives. Dans le cas présent, elles permettent par exemple de « mesurer d’une nouvelle manière la constante de Hubble, décrivant la vitesse d'expansion de l'Univers ». Plus d'une cinquantaine de publications scientifiques sont actuellement en préparation suite à ces mesures, et d'autres arriveront certainement dans un second temps. Nous aurons certainement l'occasion d'y revenir.

Pour le CNRS, ces mesures illustrent le potentiel d'une « astronomie naissante » avec « plusieurs types de messagers cosmiques » : les ondes gravitationnelles, les ondes électromagnétiques comme la lumière ou les rayons gamma, et peut-être un jour les particules telles que les neutrinos ou les rayons cosmiques.

Pour imager, c'est comme si l'on découvrait un nouveau sens et que l'on commence à observer l'espace autour de nous avec celui-ci. Nous sommes donc à l'aube d'une nouvelle manière de découvrir l'Univers et le moins que l'on puisse dire c'est que les choses vont très vite depuis un an et demi.

Suivez la conférence en direct à 16h, un live du CNRS à 18h

La conférence d'annonce est retransmise en direct sur YouTube (un replay sera ensuite proposé). À partir de 18h, le CNRS proposera une session Facebook Live sur le sujet avec une visite du détecteur Virgo en Italie. Le Centre national de la recherche scientifique répondra également à certaines questions.

Enfin, la collaboration LIGO-Virgo tient à rappeler qu'elle « promeut l'ouverture de la science à la société et rend accessibles les données associées à cette observation ». Elles sont disponibles (ou le seront très prochainement) à cette adresse.

Vous n'avez pas encore de notification

Page d'accueil
Options d'affichage
Actualités
Abonné
Des thèmes sont disponibles :
Thème de baseThème de baseThème sombreThème sombreThème yinyang clairThème yinyang clairThème yinyang sombreThème yinyang sombreThème orange mécanique clairThème orange mécanique clairThème orange mécanique sombreThème orange mécanique sombreThème rose clairThème rose clairThème rose sombreThème rose sombre

Vous n'êtes pas encore INpactien ?

Inscrivez-vous !